Sadolesi - Информационный портал
Поиск по сайту

Получение этилбензола. Этилбензол и толуол: влияние на окружающую среду

Этилбензол и толуол – это два схожих по своим свойствам вещества, относящиеся к классу «углеводороды». Они крайне токсичны для человека и пагубно влияют на организм.

Толуол – это бесцветная жидкость, также известная под названием метилбензол. Вещество отличается характерным резким и едким «ароматом». В естественной среде толуол встречается в неочищенной нефти, а также довольно часто обнаруживается в составе толуанского бальзама. Метилбензол получается в процессе каталитического риформинга бензиновых фракций нефти. Известны и иные методы получения этого токсичного вещества. Например, толуол выделяется в процессе перегонки древесной смолы.

Метилбензол является необходимым элементом при изготовлении бензола. Таким образом, толуол – это очень важное сырье, используемое в химической промышленности. Вещество обладает прекрасными свойствами растворителя, поэтому идеально подходит для большинства полимеров и лакокрасочных составов.

Этилбензол – это тоже бесцветная жидкость с характерным «бензиновым» запахом. Вещество органического происхождения содержится в каменноугольной смоле и нефти. Получают этилбензол в процессе переработки бензола в этилен или в результате риформинга. Вещество используют при производстве стирола, который в дальнейшем становится одним из компонентов для пластмассы. Помимо всего прочего, этилбензол активно применяется при изготовлении высокооктанового бензина, каучука и резинового клея. Как и толуол, эта жидкость используется в качестве сильного растворителя.

Оба вещества почти не растворяются в воде, но при этом легко смешиваются с такими веществами, как бензол, спирт и эфир.

Человек может определить этилбензол и толуол по запаху, если концентрация веществ в воздухе составит 8ppm (для толуола) и 2,3ppm (для этилбензола). По вкусу обе жидкости проявляются намного раньше. При повышенной концентрации толуол и этилбензол могут нанести сильный вред любому живому организму, поэтому при работе с ними следует соблюдать все меры предосторожности.

Этилбензол и толуол: влияние на окружающую среду

В процессе испарения обе жидкости легко взаимодействуют с воздухом и попадают в атмосферу. В случае случайного разлива таких химических компонентов или нефтепродуктов, токсичные вещества проникают в подземные воды и водоемы. Бензиновые утечки чреваты загрязнением грунта толуолом и бензолом. Загрязнения такого рода чаще всего встречаются в зонах промышленных свалок и в местах слива промышленных отходов.

Стоит заметить, что, несмотря на свои токсичные свойства, толуол и этилбензол очень быстро испаряются в воде. Также они не остаются в почве, так как перерабатываются многочисленными микроорганизмами. Ситуация в корне меняется, если жидкости попадают в подземные воды или на открытый воздух. Дело в том, что в этих местах отсутствует необходимое количество микроорганизмов, поэтому вещества просто не успевают перерабатываться естественным путем. В этом случае человек может запросто получить отравление. Жидкие вещества легко проникают через кожу и быстро попадают в кровь. Если же человек вдыхал вредные испарения, то толуол и этилбензол попадают в организм через дыхательные пути, а затем в кровь.

В ежедневной жизни мы постоянно сталкиваемся с результатами химического производства, в состав которых входят этилбензол и толуол. Это может быть бензин, керосин, печное топливо, красители, растворители, очистители и даже косметика. Некоторое количество толуола было обнаружено в обычном сигаретном дыме. Так, средний курильщик выкуривает более 1000 микрограмм токсичного вещества в день. Сотрудник завода, на котором используются различные нефтепродукты, получает еще большую дозу испарений, которая составляет 1000 миллиграмм.

Как толуол влияет на организм человека

На протяжении долгого времени ученые изучают влияние толуола на человеческий мозг. К сожалению, результаты исследований не радуют. Когда токсичное вещество попадает в организм, человек начинает испытывать сильные головные боли и страдать от бессонницы. Толуол нарушает нормальную деятельность человеческого мозга, вследствие чего умственные способности пострадавшего понижаются. В случае длительного отравления веществом наблюдаются такие симптомы, как постоянная усталость, потеря памяти, резкое снижение аппетита. В какой-то момент человек просто теряет контроль над своей мышечной и мозговой деятельностью.

После длительного взаимодействия с толуолом человек испытывает проблемы со слухом и зрением. При хронических отравлениях различать цвета становится очень сложно. Именно поэтому каждый раз при работе с клеем на протяжении долгого времени вы начинаете путаться в мыслях, чувствуете себя сонным. На такие симптомы стоит обращать внимание, так как человек может не только потерять сознание, но и умереть при подобном отравлении.

Помимо всего прочего, толуол сказывается на работе почек. Если вдыхать токсин и при этом употреблять алкогольные напитки, то интоксикация будет в разы сильнее.

Токсин негативно влияет на женский организм, провоцируя выкидыши, а также преждевременные роды. Если во время всей беременности женщина постоянно вдыхала пары толуола, то его влияние на ребенка будет сказываться и после родов, если мать будет кормить его грудным молоком.

Как этилбензол может повлиять на организм человека

Человек, вдыхающий пары этилбензола, начинает испытывать следующие симптомы: сильная усталость, постоянная сонливость, острая головная боль. Также появляется странное зудящее ощущение в ротовой полости, носу и животе. Глаза начинают слезиться, а дыхание становится тяжелым. Этилбензол также пагубно влияет на работу мышц и приводит к нарушениям координации.

При более длительном воздействии токсин может привести к серьезным заболеваниям печении, крови.

На сегодняшний день ученые провели ряд исследований, на основе которых удалось установить, что испарения толуола и этилбензола способны вызывать злокачественные образования.

Для того, чтобы определить, каково содержание толуола и этилбензола в вашей квартире, рекомендуется пригласить экспертов, которые проведут быстрый и качественный анализ воздуха.

Алкилированием называют процессы введения алкильных групп в молекулы органических и некоторых неорганических веществ. Эти реакции имеют очень большое практическое зна­чение для синтеза алкилированных в ядро ароматических соеди­нений, изопарафинов, многих меркаптанов и сульфидов, аминов, веществ с простой эфирной связью, элемент- и металлорганических соединений, продуктов переработки α-оксидов и ацети­лена. Процессы алкилирования часто являются промежуточ­ными стадиями в производстве мономеров, моющих ве­ществ и т. д

ХАРАКТЕРИСТИКА ПРОЦЕССОВ АЛКИЛИРОВАНИЯ

Классификация реакций алкилирования. Наиболее рациональ­ная классификация процессов алкилирования основана на типе вновь образующейся связи.

Алкили ров а ние по атому углерода (С-алкилиро вание) состоит в замещении на алкильную группу атома водо­рода, находящегося при атоме углерода. К этому замещению способны парафины, но наиболее характерно алкилирование для ароматических соединений (реакция Фриделя - Крафтса):

Алкилирование по атомам кислорода и серы (О- и S -алкилирование) представляет собой реакцию, в резуль­тате которой алкильная группа связывается с атомом кислорода или серы:

Алкилирование по атому азота (N -алкилирование) состоит в замещении атомов водорода в аммиаке или в аминах на алкильные группы. Это - важнейший из методов синтеза аминов:

Как и в случае реакций гидролиза и гидратации, N-алкилиро­вание нередко классифицируют как аммонолиз (или аминолиз) органических соединений.

Алкилирование по атомам других элементов (Si -, Pb -, А1-алкилирование) представляет собой важнейший путь получения элемент- и металлорганических соединений, когда алкильная группа непосредственно связывается с гетеро-атомом:

Другая классификация реакций алкилирования основана на различиях в строении алкильной группы, вводимой в органиче­ское или неорганическое соединение.

Алкилиная группа может быть насы­щенной алифатической (например, этильной и изопропильной) или циклической. В последнем случае реакцию иногда назы­вают циклоалкилированием :

При введении фенильной или вообще арильной группы об­разуется непосредственная связь с углеродным атомом арома­тического ядра -арилирование :

Введение винильной группы (винилирование) за­нимает особое место и осуществляется главным образом при помощи ацетилена:

Важнейшей из реакций введения замещенных алкильных групп является процесс β-оксиал кил и ров ания (в частном случае оксизтилирование ), охватывающий широкий круг реакций оксидов олефинов:

Алкилирующие агенты и катализаторы.

Все алкилирующие агенты по типу связи, разрывающейся в них при алкилирова-нии, целесообразно разделить на следующие группы:

    ненасыщенные соединения (олефины и ацетилен), у которых происходит разрыв π-электронной связи между атомами углерода;

    хлорпроизводные с достаточно подвижным атомом хлора, способным замещаться под влиянием различных агентов;

    спирты, простые и сложные эфиры, в частности оксиды олефинов, у которых при алкилировании разрывается углерод- кислородная связь.

Олефины (этилен, пропилен, бутены и высшие – триммеры пропилена) имеют пер­востепенное значение в качестве алкилирующих агентов. Ввиду дешевизны ими стараются пользоваться во всех случаях, где это возможно. Главное применение они нашли для С-алкилирования парафинов и ароматических соединений. Они непри­менимы для N-алкилирования и не всегда эффективны при S- и О-алкилировании и синтезе металлорганических соединений.

Алкилирование олефинами в большинстве случаев протекает по ионному механизму через промежуточное образование карбокатионов и катализируется протонными и апротонными кислотами:

Реакционная способность олефинов при реакциях такого типа определяется их склонностью к образованию карбокатионов:

Это означает, что удлинение и разветвление цепи углеродных в олефине значительно повышает его способность к алкилированию

Хлорпроизводные являются алкилирующими агентами наи­более широкого диапазона действия. Они пригодны для С-, О-, S- и N-алкилирования и для синтеза большинства элементо- и металлорганических соединений. Применение хлопроизводных paционально для тех процессов, в которых их невозможно заменить олефинами или когда хлорпроизводные дешевле и до­ступнее олефинов.

Алкилирующее действие хлорпроизводных проявляется в трех различных типах взаимодействий: в электрофильных реак­циях, при нуклеофильном замещении и в свободно-радикальных процессах. Механизм электрофильного замещения характерен главным образом для алкилирования по атому углерода, но, в отличие от олефинов, реакции катализируются только апротонными кислотами (хлориды алюминия, железа). В предель­ном случаё процёсс идет с промежуточным образованием карбокатиона

в связи с чем реакционная способность алкилхлоридов зависит от поляризации связи С-С1 или от стабильности карбокатионов и повышается при удлинении и разветвлении алкильной группы: СНз-СН 2 С1 < (СН 3) 2 СНС1 < (СН 3) 3 СС1

Спирты и простые эфиры способны к реакциям С-, О-, N- и S-алкилирования. К простым эфирам можно отнести и оксиды олефинов, являющиеся внутренними зфирами гликолей, причем из всех простых эфиров только оксиды олефинов практически используют в качестве алкилирующих агентов. Спирты при­меняют для О- и N-алкилирования в тех случаях, когда они дешевле и доступнее хлорпроизводных. Для разрыва их алкил-кислородной связи требуются катализаторы кислотного типа:

АЛКИЛИРОВАНИЕ ПО АТОМУ УГЛЕРОДА

К процессам этого типа принадлежат очень важные в практи­ческом отношении реакции алкилирования ароматических со­единений в ядро и реакции алкилирования парафинов. В более общем плане их можно разделить на процессы алкилирования по ароматическому и насыщенному атому углерода

Механизм реакции. В качестве алкилирующих агентов в про­мышленности применяют главным образдй хлорпроизвадныеи ^оле^ины. Использование спиртов менее эффективно, Потому что при алкилировании спиртами хлорид алюминия разлагается, а протонные кислоты разбавляются образующейся водой. В обоих случаях происходит дезактивирование катализатора, что обусловливает его большой расход.

При реакции с хлорпроизводными или олефинами А1С1 3 рас­ходуется только в каталитических количествах. В первом случае он активирует атом хлора, образуя сильно поляризованный комплекс или карбокатион, что с олефинами происходит только в присутствии сокатализатора - НС1:

В действительности при катализе комплексом хлорида алюми­ния с углеводородом необходимый для этого протон уже имеется в виде а-комплекса. Он передается молекуле олефина, и образовавшийся карбокатион атакует ароматическое соеди­нение, причем вся реакция происходит в слое каталитического комплекса, который непрерывно обменивается своими лиган-дами с углеводородным слоем. Получившийся тем или иным путем карбокатион, (или сильно поляризованный комплекс) атакует затем ароматическое ядро, причем реакция протекает через промежуточные я-комплекс и карбокатион с последующей быстрой стадией отщепления протона:

Строение алкильной группы в полученном продукте опреде­ляется правилом о промежуточном образовании наиболее ста­бильного карбокатиона (трет- > втор- > пере-). Поэтому в слу­чае низших олефинов только из этилена образуется первичный алкилбензол (этилбензол), из пропилена - вторичный (изопропилбензол), а из изобутена - третбутилбензол:

Однако при алкилировании высшими олефинами и хлорпро­изводными наблюдается изомеризация алкильных групп, кото­рая происходит перед алкилированием, поскольку алкилбензолы к ней уже не способны. Эта изомеризация протекает в направ­лении промежуточного образования наиболее стабильного карбокатиона, но без нарушения углеродного скелета алкильной группы, а лишь с перемещением реакционного центра. Вслед­ствие этого из хлорпроизводных и олефинов с прямой цепью атомов углерода получается смесь втор-алкилбензолов

а из соединений с разветвленной цепью - преимущественно трет- алкилбензолы.

Влияние строения ароматического соединения при реакциях алкилирования в общем такое же, как при других процессах электрофильного замещения в ароматическое ядро, но имеет свои особенности. Реакция алкилирования отличается сравни­тельно малой чувствительностью к электронодонорным замести­телям в ядре. Так, активирующее влияние алкильных групп и конденсированных ядер при катализе реакции А1С1 3 изменяется следующим образом (для бензола величина принята за 1):

Электроноакцепторные заместители сильно дезактивируют ароматическое ядро. Хлорбензол алкилируется примерно в 10 раз медленнее бензола, а карбонильные, карбокси-, циано- и нитрогруппы приводят к полному дезактивированию аромати­ческого ядра, вследствие чего соответствующие производные вообще не способны к алкилированию. Этим реакция алкилиро­вания значительно отличается от других процессов замещения в ароматическое ядро, например от хлорирования и сульфи­рования.

Правила ориентации при алкилировании в общем подобны другим реакциям электрофильного замещения в ароматическое ядро, но строение продукта может существенно изменяться в зависимости от катализаторов и условий реакции. Так, электронодонорные заместители и атомы галогена направляют даль­нейшее замещение преимущественно в пара- и орто -положения, однако в более жестких условиях и особенно при катализе хло­ридом алюминия происходит изомеризация гомологов бензола с внутримолекулярной миграцией алкильных групп и образованием равновесных смесей, в которых преобладают термодинамически более стабильные изомеры.

Последовательное алкилирование. При алкилировании аро­матических соединений в присутствии любых катализаторов происходит последовательное замещение атомов водорода с об­разованием смеси продуктов разной степени алкилирования. Например, метилирование и этилирование бензола идет вплоть до получения гексаалкилбензолов

пропилирование - до получения тетраизопропилбензола и т. д. Каждая из реакций при умеренной температуре является практически необратимой. Так, константы равновесия при син­тезе этилбензола из этилена и бензола при 0, 200 и 500 °С равны соответственно 6-10 11 , 2,2-10 4 и 1,9. Однако при катализе А1С1з и достаточно жестких условиях катализа алюмосилика­тами и цеолитами происходит обратимая реакция переалкилирования (диспропорционирование) с межмолекулярной миграцией алкильных групп:

С теми же катализаторами протекает и рассмотренная выше обратимая изомеризация с внутримолекулярной миграцией ал­кильных групп, в результате которой среди диалкилбензолов преобладает мета-изомер, среди триалкилбензолов 1,3,5-изомер и т. д.:

Способность алкильных групп к миграции изменяется в такой последовательности (СН 3) 3 С > (СН 3) 2 СН > СН 3 -СН 2 > СН 3 , причем с активным комплексом хлорида алюминия эти реакции довольно быстро идут уже при комнатной температуре, в то время как для метилбензолов требуется длительное нагре­вание.

Таким образом, при катализе протонными кислотами, а в более мягких условиях - с другими катализаторами состав про­дуктов алкилирования определяется кинетическими факторами, а с А1С1 3 и в более жестких условиях катализа алюмосилика­тами и цеолитами в пределе может установиться равновесный со­став изомеров и продуктов последовательного алкилирования. Это имеет большое значение при выборе оптимального мольного соотношения реагентов при алкилировании, определяемого эко­номическими затратами на образование полиалкилбензолов и возвращение избыточного бензола.

Побочные реакции. Кроме рассмотренного ранее образования

полиалкилбензолов при алкилировании не­желательны смолооб­разование, деструкция алкильных групп и по­лимеризация олефинов.

Смолообразование состоит в получении конденсированных ароматических соединений с высокой температурой кипения. Из подобных продуктов при алкилировании бензола обнаружены диарилалканы, триарилинданы, диарилолефины и др. При ал­килировании нафталина получается больше смолы, и в ней найдены динафтил и другие вещества с конденсированными циклами. Смолообразование становится особенно существенным при повышении температуры.

Эти же условия ведут к нежелательной деструкции алкиль­ных групп и побочному образованию алкилбензолов с более короткой алкильной группой. Так, при реакции с пропиленом побочно получается этилбензол, с этиленом - толуол и т. д. Особенно заметна такая деструкция при алкилировании алкил-галогенидами и олефинами с достаточно длинной углеродной цепью. Деструкция, вероятно, происходит на стадии расщепле­ния карбокатиона, образовавшегося из алкилирующего агента

Наконец, образование полимеров происходит в результате последовательного взаимодействия карбокатиона с олефином:

Полимеры имеют небольшую молекулярную массу, и их обра­зование подавляется наличием избытка ароматического углево­дорода при снижении концентрации олефина в жидкой фазе.

Кинетика процесса. Сама реакция алкилирования сактив­ным комплексом хлорида алюминия идет очень быстро, сильно ускоряется при механическом перемешивании или интенсивном барботировании газообразных олефинов через реакционную массу и протекает в диффузионной или близкой к ней области. Ее скорость повышается при росте давления, но мало зависит от температуры, имея низкую энергию активации. При этом сохраняется обычная зависимость в реакционной способности олефинов - более сильная, чем различие в их растворимости. Видимо, лимитирующей является стадия диффузии олефина че­рез пограничную пленку каталитического комплекса хлорида алюминия, в которой протекают все реакций. В отличие от этого, переалкилирование идет значительно медленнее и суще­ственно ускоряется при повышении температуры, так как имеет энергию активации ~6ЗкДж/моль.

Обе реакции замедляются при постепенном дезактивирова­нии катализатора, но особенно сильно падает скорость переал­килирования. В результате в реакционной смеси будет накап­ливаться значительное количество полиалкилбензолов, не успе­вающих вступить в обратимую реакцию переалкилирования.

Во избежание этого приходится ограничивать подачу реагентов, и, следовательно, возможность интенсификации процесса лими­тируется самой медленной реакцией переалкилирования.

На дезактивирование катализатора кроме примесей реаген­тов влияет накопление некоторых побочных продуктов алкилирования, способных прочно связывать А1С1 3 или образовывать стабильные σ-комплексы, с трудом отдающие свой протон моле­куле олефина. Такими веществами при низкой температуре, когда переалкилирование идет медленно, являются полиалкилбензолы, а при высокой температуре - полициклические аро­матические соединения и смолы. В результате оказывается, что оптимальные производительность и расход катализатора при получении этил- и изопропилбензола достигаются при некото­рой средней температуре («100°С), когда переалкилирование протекает уже достаточно быстро, но полициклических веществ, дезактивирующих катализатор, получается еще мало.

При синтезе соединений с более длинной алкильной группой выбор температуры лимитируется побочной реакцией деструк­ции, а при получении алкилнафталинов процессами конденсации и осмоления. В этих случаях ее оптимум равен 30-50 °С, при­чем при алкилировании нафталина селективность можно допол­нительно повысить применением растворителя. Это объясняется тем, что в системе реакций

Смолообразование имеет второй порядок по нафталину или ял-килнафталину, а основная реакция - первый. В результате се­лективность по алкилнафталину растет при снижении концен­трации нафталина.

Технологические основы процесса

Так как реакция переалкилирования протекает в алкилаторе одновременно с алкилированием, то для совместного проведения этих процессов в алкилатор вместе с бензолом и этиленом подаётся также фракция ДЭБов (ПАБов), выделенная из реакционной массы при ректификации.

Т. к. данный процесс протекает в диффузионной области, необходимо использование барботера для увеличения поверхности раздела фаз;

Реакция протекает с выделением тепла, следовательно необходимо отводить тепло, что достигается испарением бензола;

Для более глубокого превращения этилена необходимо использовать повышенное давление;

Реакция алкилирования является последовательной реакцией, поэтому для увеличения селективности необходимо поддерживать соотношение бензол: этилен = 3: 1 моль;

Хлорид алюминия является слабым катализатором, поэтому следует готовить каталитический комплекс заранее.

Получение этилбензола осуществляется методом алкилирования бензола этиленом. Процесс алкилирования бензола этиленом - каталитический, проходит при температуре в пределах 125-138 0 С и давлении 0,13-0,25 МПа (1,3-2,5 кгс/см 2), с тепловым эффектом 108 кДж/моль.

Большую роль в производстве этилбензола играет дозировка сырья. Бензол подается в количестве, соответствующем установленному молярному соотношению бензола к этилену 2,8-3,6: 1. При нарушении соотношения бензола к этилену уменьшается концентрация этилбензола в реакционной массе.

Высокие требования предъявляются к осушке сырья, поскольку влага приводит к дезактивации катализатора и, следовательно, к его расходу. Содержание влаги в бензоле, поступающем на алкилирование, рекомендуется поддерживать на уровне 0,002% (масс.). Для этого исходный и возвратный бензол подвергают осушке методом азеотропной ректификации.

Образующаяся в процессе алкилирования реакционная масса (алкилат) в среднем содержит:

– 45-60% масс непрореагировавшего бензола;

– 26-40% масс этилбензола;

– 4-12% масс ПАБов (фракция ДЭБ).

Коррозия в производстве этилбензола обусловлена характером применяемого для алкилирования катализатора хлористого алюминия и инициатора процесса - хлористого этила.

Продукты алкилирования, в связи с присутствием в них хлористого водорода, обладают ярко выраженными коррозионными свойствами, которые усиливаются при температуре более 70 0 С

2.4 Описание технологической схемы производства

Процесс алкилирования бензола этиленом проводится в алкилаторе поз. Р-1 при температуре 125 – 138 0 С и давлении 0,13 - 0,25 МПа (1,3 - 2,5 кгс/см 2). При повышении давления в алкилаторе поз. Р-1 более 0,3 МПа (3 кгс/см 2) прекращается подача бензола и этилена в алкилатор.

В алкилатор поз. Р-1 поступают:

Осушенная бензольная шихта;

Катализаторный комплекс;

Фракция ДЭБов (ПАБов);

Этилен;

Рециркулируемый катализаторный комплекс из отстойника поз. О-1 ;

Возвратный бензол после конденсатора поз. Т-1 или поз. Т-2;

Реакция алкилирования идет с выделением тепла 108 кДж/моль, избыточное количество тепла снимается циркулируемым катализаторным комплексом и испаряющимся бензолом, который из верхней части алкилатора поз. Р-1 в смеси с абгазами направляется в конденсатор поз. Т-1 (поз.Т-2) охлаждаемый оборотной водой. Бензольный конденсат из конденсатора поз. Т-1 (поз. Т-2) самотеком поступает в алкилатор поз. Р-1.

Из алкилатора поз. Р-1 реакционная масса поступает через холодильник поз. Т-3, где охлаждается оборотной водой до температуры 40 - 60 0 С, в отстойник поз. О-1 для отстоя циркулирующего катализаторного комплекса.

Отстоявшийся циркулируемый катализаторный комплекс снизу отстойника поз. О-1 откачивается в алкилатор поз. Р-1. Соотношение рециркулирующего катализаторного комплекса к реакционной массе в пределах (0,7 - 1,3) : 1 по массе.

Для поддержания активности рециркулируемого катализаторного комплекса предусмотрена:

Подача хлористого этила в алкилатор поз. Р-1 и в линию рециркулируемого каткомплекса.

В случае снижения активности рециркулируемого катализаторного комплекса ниже предусмотрен вывод его из отстойника поз. О-1 на разложение.

Из отстойника поз. О-1 реакционная масса самотексом поступает в сборник поз. Е-1.

Алкилат из емкости поз. Е-1 узла алкилирования поступает в смеситель поз. С-1 на смешение с кислой водой, циркулирующей в системе разложения каткомплекса в аппаратах: поз. О-2 поз. Н-2 поз. С-1 поз. О-2. Соотношение циркулирующей кислой воды, подаваемой в смеситель поз. С-1, и алкилата составляет 2:1. В систему разложения через смеситель поз. С-1 подаётся также отработанный каткомплекс (в равных пропорциях со свежим) после отстойника поз. О-1.

Отстой алкилата от воды происходит в отстойнике поз. О-2. Избыточное количество воды из отстойника поз О-2 по уровню раздела фаз самотеком сливается в сборник узла отпарки углеводородов. Нижний водный слой из отстойника поз. О-2 рециркулирует в смеситель поз. С-1.

Алкилат из отстойника поз. О-2 поступает в промывную колонну поз. Кн-1 на вторичную промывку водой, подаваемой из промывной колонны поз. Кн-2.

Из промывной колонны поз. Кн-1 алкилат поступает в емкость поз. Е-3, откачивается на нейтрализацию в смеситель поз. С-2. Нижний водный слой из промывной колонны поз. Кн-3 сливается в емкость поз. Е-2 подается в смеситель поз. С-1.

Нейтрализация алкилата производится химическим реактантом, содержащим NаОН, циркулирующим в системе нейтрализации по схеме:

поз. О-3 поз. Н-5 поз. С-2 поз. О-3.

В отстойнике поз. О-3 происходит отстой алкилата от раствора реактанта. Соотношение циркулирующего раствора щелочи и алкилата равно 1,2:1.

Для поддержания постоянной концентрации раствора реактанта в отстойнике поз. О-3 периодически по результатам анализа подается 15-20% (масс.) раствор реактанта в линию циркулирующего 2-10% (масс.) раствора реактанта.

Нейтрализованный алкилат из отстойника поз. О-3 поступает в промывную колонну поз. Кн-2 на отмывку от щелочи. Отмывка алкилата от щелочи производится паровым конденсатом.

Нижний слой – химзагрязненная вода – из колонны поз. Кн-2 поступает в сборник поз. Е-4, откуда откачивается на промывку алкилата в колонну поз. Кн-1.

Алкилат из промывной колонны поз. Кн-2 самотеком поступает в отстойник поз. О-4.

Нижний слой – химзагрязнная вода – из отстойника поз. О-4 сливается в подземную емкость, а алкилат поступает в емкость поз. Е-5, откуда откачивается на склад.

Таблица № 4.9 Отходы производства этилбензола

Состав, %

Количес-тво, т/г

Периодичность образования

Направление использования

Смола КОРЭ

(кубовые остат-ки ректифика-ции этилбензо-ла)

Диэтилбензол, триэтилбензолы – 5-15,

Высшие ПАБы – 80-95

Постоянно

Используется в качестве сырья для получения технического углерода, или в качестве коте-льного топлива

Потери через неплотности оборудования на наружной установке

Постоянно

Сбрасывается в атмосферу

Химически загрязненные сточные воды

ХПК не более 0,02,

Бензол не более 0,005,

Этилбензол не более 0,005,

Постоянно

После очистки направляются в реку

ПОЛУЧЕНИЕ ЭТИЛБЕНЗОЛА

Этилбензол для производства стирола получается алкилированием бензола этиленом по реакции:

Наряду с основной реакцией протекает ряд побочных реакций, при которых образуются более глубоко алкилированные производные бензола: диэтилбензол С6Н6(С2Н5)2, триэтилбензол С6Н6(С2Н5)3, тетраэтилбензол С6Н6(С2Н5)4. Катализатором реакции алкилирования служит комплексное соединение, получаемое на основе хлорида алюминия, этилхлорида, бензола и алкилбензолов:

Реакция алкилирования протекает по следующей схеме.

Присоединение этилена к каталитическому комплексу:

Реакция обмена между каталитическим комплексом и бензолом с образованием этилбензола:

Хлорид алюминия может образовывать тройные комплексы не только с одним, но и с двумя, тремя и т. д. этильными радикалами которые при обменной реакции с бензолом дают полиалкилбензолы. Поэтому в реакционной смеси кроме этилбензола находятся диэтилбензол и другие полиалкилбензолы.

Комплексы могут вступать в обменные реакции не только с бензолом, но и с продуктами реакции, например с диэтилбензолом, тогда происходит процесс переалкилирования по схеме:

Так как реакция переалкилирования протекает одновременно с алкилированием в алкилатор вместе с бензолом подается также фракция полиалкилбензолов, выделенная из реакционной массы при ректификации. В результате всех указанных реакций устанавливается вполне определенный равновесный состав продуктов реакции, зависящий только от соотношения алкильных радикалов и бензольных ядер в реакционной смеси.

Бензол подается в количестве, соответствующем молярному соотношению бензол:этилен = (2,8-3,3):1. Образующаяся в процессе алкилирования реакционная масса в среднем содержит: 45-- 55% непрореагировавшего бензола, 26--35% этилбензола, 4--10% полиалкилбензолов.

Технологический процесс получения этилбензола состоит из двух основных стадий: алкилирование бензола этиленом и ректификация реакционной массы.

Алкилирование бензола этиленом

Процесс алкилирования бензола этиленом проводится в алкила- торе 1 (рис. 37) в среде этилхлорида при температуре 125--135°С и давлении 0,26--0,4 МПа. В алкилатор подаются: осушенная бензольная шихта, каталитический комплекс, фракция полиалкилбензолов, этилен, рециркулирующий каталитический комплекс, возвратный бензол.


Рис. 37.

1-- алкилатор, 2,3 -- конденсаторы, 4 -- теплообменник, 5, 10, 17, 22 -- отстойники; 8, 9, 13, 15, 18, 21, 24 -- насосы, 7, 12, 14, 20, 23 -- емкости; 8, 16 -- смесители, 11, 19 -- промывные колонны.

І -- бензол, II -- этилен; III -- этилхлорид, IV -- катализаторный комплекс; V -- полиалкилбензолы; VI -- отработанный каталитический комплекс; VII -- отдувки иа абсорбцию бензола, VIII -- избыточная вода; IX -- кислые отдувки, X -- отработанный раствор щелочн; XI -- конденсат; XII -- химически загрязненная вода, XIII -- реакционная масса, XIV -- полиалкилбензолы; XV -- нейтральные отдувки.

Реакция алкилирования идет с выделением теплоты, избыточное количество которой снимается рециркулирующим каталитическим комплексом испаряющимся бензолом. Бензол из верхней части алкилатора в смеси с абгазом направляется в конденсатор 2, охлаждаемый водой. Несконденсировавшиеся газы из конденсатора 2 направляются в конденсатор 3, охлаждаемый охлажденной водой. Отдувки после конденсатора 3 поступают на дальнейшее улавливание паров бензола. Бензольный конденсат из конденсаторов 2 и 3 самотеком сливается вниз алкилатора 1. Из алкилатора 1 реакционная масса через теплообменник 4, где охлаждается водой до 40--60 °С, направляется в отстойник 5 для отделения от циркулирующего каталитического комплекса. Отстоявшийся каталитический комплекс с низа отстойника 5 забирается насосом 6 и возвращается в алкилатор 1. Для поддержания активности катализатора в линию рециркулирующего комплекса подается этилхлорид. В случае снижения активности катализатора предусмотрен вывод отработанного каталитического комплекса на разложение. Реакционная масса из отстойника 5 собирается в емкость 7, откуда за счет давления ё системе алкилирования поступает в смеситель 8 на смешение с кислой водой, циркулирующей в системе разложения: отстойник 10-- насос 9--смеситель 8. Соотношение циркулирующей воды, подаваемой в смеситель, и реакционной массы составляет (l-2):1. Вода в систему разложения подается из сборника 12 насосом 13. Реакционная масса отстаивается от воды в отстойнике 10; нижний водный слой насосом 9 направляется в смеситель, а верхний слой -- реакционная масса -- самотеком стекает в промывную колонну и на вторичную промывку водой, подаваемой насосом 21 из промывной колонны 19. Из промывной колонны 11 реакционная масса самотеком поступает в сборник 14, откуда насосом 15 откачивается на нейтрализацию в смеситель 16. этилбензол реакция катализатор получение очистка

Нижний водный слой из промывной колонны 11 самотеком сливается в емкость 12 и насосом 13 подается в смеситель 8. Нейтрализация реакционной массы в смесителе 16 проводится 2--10%-ным раствором едкого натра. Соотношение реакционной массы и циркулирующего раствора едкого натра 1:1. Отделение реакционной массы от раствора щелочи происходит в отстойнике 17, откуда реакционная масса самотеком поступает в колонну 19 на отмывку от щелочи водным конденсатом. Нижний слой -- химически загрязненная вода -- из колонны сливается в емкость 20 и насосом 21 откачивается на промывку реакционной массы в колонну 11. Реакционная масса из верхней части колонны самотеком поступает в отстойник 22, затем собирается в промежуточную емкость 23 и откачивается на склад.

Выделение и очистка этилбензола

Реакционная масса, полученная при алкилировании бензола этиленом, подогревается в теплообменнике 1 (рис. 38) за счет теплоты полиалкилбензолов, в теплообменнике 2 за счет теплоты парового конденсата, в теплообменнике 3 за счет теплообмена с этилбензолом-ректификатом и в теплообменнике 4 за счет теплоты парового конденсата и подается в колонну 5 для выделения непрореагировавшего бензола. Пары бензола из верха колонны конденсируются в воздушном конденсаторе 7 и конденсаторе 8, охлаждаемом охлажденной водой. Несконденсировавшиеся газы после конденсатора 8 направляются на улавливание бензола. Конденсат -- возвратный бензол -- собирается в емкость 9, откуда часть его подается в колонну в виде флегмы, остальное количество через холодильник 11 откачивается на склад.

Кубовая жидкость колонны 5 насосом 12 подается в колонну 13 для получения этилбензола-ректификата. Обогрев колонны осуществляется паром через выносной кипятильник 14. Пары этилбензола-ректификата из верхней части колонны 13 поступают в конденсатор-испаритель 15, где конденсируются за счет испарения парового конденсата. Несконденсировавшиеся пары этилбензола подаютсяв конденсатор 16. Полученные конденсаты собираются в емкость 17, откуда насосом 18 часть их возвращается в колонну в виде флегмы, а остальное через теплообменник 3 направляется на склад.

Кубовая жидкость колонны 13, содержащая полиалкилбензолы и смолы, насосом 19 подается в колонну 20 для отделения полиалкилбензолов от смолы. Пары полиалкилбензолов из верха колонны 20 поступают на конденсацию. Конденсат стекает в емкость 24, откуда часть его подается в колонну в виде флегмы, остальное количество через теплообменник 1 откачивается на склад. Полиалкилбензольная смола из куба колонны 20 насосом 25 подается на склад или на установку получения сополимеров.


Режим работы колонн установки выделения этилбензола


Министерство общего образования РФ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ

УНИВЕРСИТЕТ

НИЖНЕКАМСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ

ИНСТИТУТ

Кафедра химической технологии

Группа

Курсовой проект

Тема: Получение этилбензола методом алкилирования бензола этиленом

Студентка:

Руководитель (_________)

Студент ка (_________)

г. Нижнекамск

ВВЕДЕНИЕ

Темой данного курсового проекта является получение этилбензола методом алкилирования бензола этиленом.

Наиболее распространенным процессом нефтехимического синтеза является каталитическое алкилирование бензола олефинами, что определяется высоким спросом на алкилароматические углеводороды – сырьё в производстве синтетических каучуков, пластических масс, синтетических волокон и др.

Алкилированием называют процессы введения алкильных групп в мо- лекулы органических и некоторых неорганических веществ. Эти реакции имеют большое практическое значение для синтеза алкилароматических соединений, изо-алканов, аминов, меркаптанов и сульфидов и др.

Реакция алкилирования бензола алкилхлоридами в присутствии безводного хлорида алюминия впервые была осуществлена в 1877 г. Ш. Фриделем и Дж. Крафтсом. В 1878 г. ученик Фриделя Бальсон получил этилбензол алкилированием бензола этиленом в присутствии ALCL3.

Со времени открытия реакции алкилирования было разработано много различных методов замещения водородных атомов бензола и других ароматических углеводородов на алкильные радикалы. Для этого применяли различные агенты алкилирования и катализаторы 48,49.

Скорость алкилирования ароматических углеводородов в несколько сот раз выше, чем парафинов, поэтому алкильная группа практически всегда направляется не в боковую цепь, а в ядро.

Для алкилирования ароматических углеводородов олефинами применяются многочисленные катализаторы, имеющие характер сильных кислот, в частности серная кислота (85-95%-ная), фосфорная и пирофосфорная кислоты, безводный фтористый водород, синтетические и природные

алюмосиликаты, иониты, гетерополикислоты. Кислоты в жидком виде проявляют каталитическую активность в реакциях алкилирования при невысоких температурах (5-100°С); кислоты на твердых носителях, например фосфорная кислота на кизельгуре, действуют при 200-300°С; алюмосиликаты активны при 300-400 и 500°С и давлении 20-40 кгс/см² (1,96-3,92 МН/м²).

Актуальность данной темы является, что в дальнейшем из этилбензола получают стирол, методом дегидрирования этилбензола.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

2.1 Теоретические основы принятого метода производства.

Алкилирование бензола этиленом. Промышленные процессы алкилирования бензола этиленом различаются в зависимости от применяемого катализатора. Ряд катализаторов опробован в опытно-промышленном масштабе.

В 1943 г.фирмой «Copers» осуществлено алкилирование бензола этиленом на алюмосиликатном катализаторе в жидкой фазе при 310°С и 63 кгс/см² (6,17 МН/м²) при мольном отношении этилен: бензол 1:4.

Широкое распространение приобрёл процесс алкилирования бензола этиленом на хлористом алюминии при атмосферном или несколько повышенном давлении и температуре 80-100°С.

Конкурирует с этим методом алкилирование на твердом фосфорнокислотном катализаторе, однако на этом катализаторе может быть получен только изопропилбензол. Алкилирование же бензола этиленом практически на нём не проводится.

Большую группу катализаторов алкилирования составляют апротонные кислоты (кислоты Льюиса) – галогениды некоторых металлов. Они обычно проявляют каталитическую активность в присутствии промоторов, с которыми образуют продукты, имеющие характер сильных протонных кислот. Из катализаторов этого типа могут применяться хлористый алюминий, бромистый алюминий, трёххлористое железо, хлористый цинк, трёххлористый и четырёххлористый титан. Промышленное применение имеет только хлористый алюминий.

О механизме реакций алкилирования бензола и его гомологов олефинами придерживаются следующих общих представлений.

Алкилирование в присутствии хлористого алюминия трактуется по механиз-


му кислотного катализа. В этом случае в системе должен присутство-

вать промотор, роль которого играет хлористый водород. Последний может

образоваться в присутствии воды:

CH3 CH=CH2 + H – CL ∙ ALCL3 ↔ CH3 – CH – CH3 ∙ CL ∙ ALCL3

Дальнейшее присоединение к ароматическому ядру проходит по меха низму, аналогичному рассмотренному выше:

HCL(CH3)2 ∙CL∙ALCL3 +CH3 –CH–CH3 ∙CL∙ALCL3 →HCH(CH3)2 + CH(CH3)2 + CL ∙ ALCL3 + HCL + ALCL3

В присутствии хлористого алюминия легко протекает деалкилирование, что указывает на обратимость реакции алкилирования. Реакции деалкилирования пользуются для превращения полиалкилбензолов в моноалкил-

Термодинамика реакции алкилирования. На основе физико-химических

констант углеводородов и их термодинамических функций – энтальпии ΔН и

энтропии ΔS можно найти константы равновесия и рассчитать равновесные

выходы алкилпроизводных при алкилировании бензола олефинами в зависи-

мости от температуры и давления.

Равновесный выход этилбензола возрастает с увеличением мольного

избытка бензола и с повышением давления при данной температуре.

С6 H6 + C2 H4 ↔ C6 H5 C2 H5

При алкилировании бензола этиленом при температуре ниже 250-300°С

достигается практически полное превращение бензола в этилбензол. При 450

-500°С для увеличения глубины превращения требуется повышение давления до 10-20 кгс/см² (0,98-1,96 МН/м²).

Реакция алкилирования бензола этиленом является последовательной обратимой реакцией первого порядка. С углублением процесса наряду с моноалкилбензолом образуются также полиалкилбензолы

C6 H6 + Cn H2n ↔ C6 H5 Cn H2n+1

C6 H5 Cn H2n+1 + Cn H2n ↔ C6 H4 (Cn H2n+1)2 которые являются нежелательными побочными продуктами. Поэтому состав реакционной смеси алкилатов чаще определяется кинетическими факторами, чем термодинамическим равновесием.

Так, деалкилирование термодинамически возможно с большой глубиной при 50-100°С. И действительно, в присутствии хлористого алюминия оно проходит хорошо, так как с этим катализатором процесс алкилирования является обратимым. Однако при тех же температурах в присутствии кислот деалкилирование вовсе не происходит. М.А. Далиным экспериментально изучен состав продуктов алкилирования бензола этиленом в присутствии хлористого алюминия.

Состав реакционной смеси определяется соотношением бензола и этилена и не зависит от того, каким образом получен алкилат: прямым алкилированием или деалкилированием полиалкилбензола. Однако этот вывод справедлив только при применении в качестве катализатора хлористого алюминия.

Процесс алкилирования проводится в алкилаторе – реакционной колонне, эмалированной или футерованной графитовой плиткой для защиты от коррозии. Три секции колонны имеют рубашки для охлаждения, однако основное количество тепла отводится испарением некоторой части бензола. Алкилирование ведется в присутствии жидкого катализаторного комплекса, состоящего из хлористого алюминия (10-12%), бензола (50-60%) и полиалкилбензолов (25-30%). Для образования хлористого водорода, который является промотором реакции, в каталитический комплекс добавляют 2% воды от

массы хлористого алюминия, а также дихлорэтан или хлористый этил, при расщеплении которых образуется хлористый водород.

Для выделения этилбензола из алкилата отгоняют при атмосферном давлении бензол (одновременно с бензолом удаляются следы воды). От кубовой жидкости при пониженном давлении (200 мм рт.ст., 0,026 МН/м²) отгоняется широкая фракция – смесь этилбензола и полиалкилбензолов. В следующей колонне при остаточном давлении 50 мм рт.ст. (0,0065 МН/м²) полиалкилбензолы отделяются от смол. Широкую фракцию разгоняют в вакуумной колонне при остаточном давлении 420-450 мм рт.ст. (0,054-0,058 МН/м²). Товарный этилбензол перегоняется в пределах 135,5-136,2°С.

Для получения этилбензола используется этан – этиленовая фракция пиролиза, содержащая 60-70% этилена.

Бензол для алкилирования должен содержать не более 0,003-0,006% воды, в то время как товарный бензол содержит 0,06-0,08% воды. Обезвоживание бензола проводится методом азеотропной дистилляции. Содержание серы в бензоле не должно превышать 0,1%. Повышенное содержание серы вызывает увеличение расхода хлористого алюминия и ухудшает качество готовой продукции.


1.2. Характеристика сырья и получаемого продукта.

Наименование сырья, материалов,

реагентов,

катализаторов.

полуфабрикатов,

изготовляемой

продукции.

Номер государст-

венного или

отраслевого

стандарта,

технических

стандарта

предприятия.

Показатели качества, обязательные для проверки.

Норма (по

ОСТу, стан-

дарту предпри-

Назна-чение,

область применения.

1.ЭТИЛБЕНЗОЛ

бесцветная прозрачная жидкость. Основные показатели свойств этилбензола:

Молекулярная масса=106,17

Плотность, г/см³ = 0,86705 Температура,°С Кипения= 176,1

Плавления=-25,4 Вспышки= 20

Самовоспламенения= 431.

Теплота, кДж/моль

Плавления=9,95

Испарения=33,85 Теплоёмкость, Дж/моль ∙ К=106,4

Теплота сгорания, ккал/моль=1089,4

Растворимость в воде, г/100мл=0,014

В промышленности используют в основном как сырье для синтеза стирола, как добавка к моторному топливу, в качестве разбавителя и растворителя. С6 H5 C2 H5

Большую часть этилбензола получают алкилированием бензола этиленом и значительно меньшее его количество выделяют сверхчеткой ректификацией из продуктов риформинга прямогонного бензина. Основные показатели свойств этилбензола: Этилбензол раздражает кожу, оказывает

судорожное действие. ПДК в атмосферном воздухе составляет 0,02 мг/м³, в водоёмах хозяйственно-

бытового пользования – 0,01 мг/л. КПВ 0,9-3,9% по объёму. Объём мирового

производства около 17 млн. т в год (1987). Объём производства в России 0,8

млн. т в год (1990).

H2 C=CH2. Бесцветный газ со слабым запахом. Этилен растворяется в воде 0,256 см³/см³ (при 0 °С), растворяется в спиртах и эфирах.

Этилен обладает свойствами фитогормонов – замедляет рост, ускоряет старение клеток, созревание и опадение плодов. Он взрывоопасен, КПВ 3-34% (по объёму), ПДК в атмосферном воздухе 3 мг/м³, в воздухе рабочей зоны 100 мг/м³. Мировое производство 50 млн. т в год (1988).

В больших количествах (20%) содержится в газах нефтепереработки; входит в состав коксового газа. Один из основных продуктов нефтехимической промышленности: применяется для синтеза винилхлорида, этиленоксида, этилового спирта, полиэтилена и др. Этилен получается при переработке нефти и природного газа. Выде-

ленная этиленовая фракция содержит 90-95% этилена с примесью пропилена, метана, этана. Применяется как сырьё в производстве полиэтилена, окиси этилена, этилового спирта, этаноламина, поливинилхлорида, в хирургии – для наркоза.


C6 H6. Бесцветная жидкость со своеобразным нерезким запа

хом. С воздухом образует взрывоопасные смеси, хорошо смешивается с эфирами, бензином и другими органическими растворителями. Растворимость в воде 1,79 г/л (при 25 °С). Токсичен, опасен для окружающей среды, огнеопасен. Бензол – ароматический углеводород.

Основные показатели свойств бензола:

Молекулярная масса=78,12

Плотность, г/см³=0,879

Температура, °С:

Кипения=80,1

Плавления=5,4

Вспышки=-11

Самовоспламенения=562

Теплота, кДж/моль:

Плавления=9,95

Испарения=33,85

Теплоёмкость, Дж/моль ∙ К=81,6

Бензол смешивается во всех отношениях с неполярными растворителями: углеводородами, скипидаром, эфирами, растворяет жиры, каучук, смолы (гудрон). Даёт с водой азеотропную смесь с температурой кипения 69,25 °С, образует двойные и тройные азеотропные смеси со многими соединениями.

Встречается в составе некоторых

нефтей, моторных топлив, бензинов. Широко применяется в промышленности, является исходным сырьём для производства лекарств, различных пластмасс, синтетической резины, красителей. Бензол входит в состав сырой нефти, но в промышленных масштабах по большей части синтезируется из других её компонентов. Применяется также для получения этилбензола, фенола, нитробензола, хлорбензола, как растворитель.

В зависимости от технологии производства получают различные марки бензола. Бензол нефтяной получают в процессе каталитического риформинга бензиновых фракций, каталитического гидродеалкилирования толуола и ксилола, а также при пиролизе нефтяного сырья.


2.3. Описание технологической схемы.

В Приложении А представлена технологическая схема производства этилбензола. Процесс алкилирования бензола этиленом проводится в алкилаторе поз. Р-1 в среде этилхлорида при температуре 125-135C и давлении 0,26-0,4 МПа. В алкилатор подаются: осушенная бензольная шихта, каталитический комплекс, фракция полиалкилбензолов, этилен, рециркулирующий каталитический комплекс, возвратный бензол.

Реакция алкилирования идет с выделением теплоты, избыточное количество которой снимается рециркулирующим каталитическим комплексом и испаряющимся бен­золом. Бензол из верхней части алкилатора в смеси с абгазом на­правляется в конденсатор поз. Т-1, охла­ждаемый водой. Несконденсировавшиеся газы из конденсатора поз. Т-1 направляются в конденсатор поз. Т-2, охлаждаемый охлажденной водой t=0°C. Отдувки после конденсатора поз. Т-2 по­ступают на дальнейшее улавлива­ние паров бензола. Бензольный конденсат из конденсаторов поз. Т-1 и Т-2 самотеком сливается в низ алки­латора поз. Р-1. Из алкилатора поз. Р-1 реак­ционная масса через теплообмен­ник поз. Т-3, где охлаждается водой до 40-60 °С, направляется в отстой­ник поз. Е-1 для отделения от циркули­рующего каталитического комп­лекса. Отстоявшийся каталитиче­ский комплекс с низа отстойника поз. Е-1 забирается насосом поз. Н-1 и возвра­щается в алкилатор поз. Р-1. Для под­держания активности катализато­ра в линию рециркулирующего комплекса подается этилхлорид. В случае снижения активности катализатора предусмотрен вывод, отработанного каталитического комплекса на разложение. Реак­ционная масса из отстойника поз. Е-1 собирается в емкость поз. Е-2, откуда за счет давления в системе алкилирования поступает в смеситель поз. Е-3 на смешение с Кислой водой, циркулирующей в системе разложения:

отстойник поз. Е-4-насос, поз. Н-2-смеситель, поз. Е-3. Соотношение циркулирую­щей воды, подаваемой в смеситель, и реакционной массы состав­ляет l/2: 1. Вода в систему разложения подается из сборника поз. Е-5 насосом поз. Н-3. Реакционная масса отстаивается от воды в отстойнике поз. Е-4; нижний водный слой насосом поз. Н-2 направляется в смеситель; а верхний слой - реакционная масса - самотеком стекает в промыв­ную колонну поз. К-1 на вторичную промывку водой, подаваемой насосом поз. Н-4 из промывной колонны поз. К-2. Из промывной колонны поз. К-1 реакцион­ная масса самотеком поступает в сборник поз. Е-6, откуда насосом поз. Н-5 откачивается на нейтрализацию в смеситель поз. Е-7.

Нижний водный слой из промывной колонны поз. К-1 самотеком сли­вается в емкость поз. Е-5 и насосом поз. Н-3 подается в смеситель поз. Е-3. Нейтрали­зация реакционной массы в смесителе поз. Е-7 проводится 2-10%-ным раствором едкого натра. Соотношение реакционной массы и цирку­лирующего раствора едкого натра 1:1.Отделение реакционной массы от раствора щелочи происходит в отстойнике поз. Е-8, откуда ре­акционная масса самотеком поступает в колонну поз. К-2 на отмывку от щелочи водным конденсатом. Нижний слой - химически загряз­ненная вода - из колонны сливается в емкость поз. Е-9 и насосом поз. Н-4 откачивается на промывку реакционной массы в колонну поз. К-1. Реакционная масса из верхней части колонны самотеком поступает в от­стойник поз. Е-10, затем собирается в промежуточную емкость поз. Е-11 и отка­чивается насосом поз. Н-7 на склад.

Технологическая схема алкилирования бензола этиленом на хлористом алюминии, пригодная также и для алкилирования бензола пропиленом.

Процесс алкилирования проводится в алкилаторе – реакционной колонне эмалированной или футерованной графитовой плиткой для защиты от коррозии. Три секции колонны имеют рубашки для охлаждения, однако основное количество тепла отводится испарением некоторой части бензола. Алкилирование ведется в присутствии жидкого катализаторного комплекса, состоящего из хлористого алюминия (10 – 12 %), бензола (50 – 60 %) и

полиалкилбензолов (25 – 30 %). Для образования хлористого водорода, который является промотором реакции, в каталитический комплекс добавляют 2 % воды от массы хлористого алюминия, а также дихлорэтан или хлористый этил, при расщеплении которых образуется хлористый водород.


1.5. Описание устройств и принцип действия основного аппарата.

Алкилирование производится в реакторе колонного типа без механического перемешивания при давлении, близком к атмосферному (Приложение Б). Реактор состоит из четырёх царг, эмалированных или футерованных керамическими либо графитовыми плитками. Для лучшего контактирования внутри реактора имеется насадка. Высота реактора 12 м, диаметр 1,4 м. Каждая царга снабжена рубашкой для отвода тепла при нормальном режиме работы реактора (она же используется для разогрева при пуске реактора). Реактор доверху заполнен смесью бензола и катализатора. В нижнюю часть реактора непрерывно подают осушенный бензол, каталитический комплекс и газообразный этилен. Жидкие продукты реакции алкилирования непрерывно отбирают на высоте примерно 8 м от основания реактора, а сверху реактора отводится паро-газовая смесь, состоящая из непрореагировавших газов и паров бензола. Температура в нижней части реактора равна 100°С, в верхней – составляет 90 - 95°С. Катализаторный комплекс приготовляют в аппарате, откуда суспензия катализатора непрерывно подаётся в реактор алкилирования.

Алкилатор для получения этилбензола в жидкой фазе представляет со­бой стальную колонку, выложенную внутри кислотоупорной футеровкой поз. 4 или покрытую кислотоупорной эмалью для защиты стенок от корродирующего действия соляной кислоты. Аппарат имеет четыре царги поз.1, соеди­ненные фланцами поз. 2. Три царги снабжены рубашками поз. 3 для охла­ждения водой (для отвода тепла при реакции алкилирования). Реактор во время работы заполнен реакционной жидкостью, вы­сота столба которой составляет 10 м . Над уровнем жидкости иногда располагают два змеевика, в которых циркулирует вода, для дополнительного охлаждения.

Работа алкилатора непрерывна: в нижнюю часть его все время подаются бензол, этилен и каталитический комплекс; смесь реаги­рующих веществ и катализатора поднимается в верхнюю часть аппарата и отсюда перетекает в отстойник. Пары, выходящие из верхней части алкилатора (состоящие в основном из бензола), конденсируются и снова возвращаются в алкилатор в виде жид­кости.

За один проход этилен реагирует почти полностью, а бензол только на 50-55%; следовательно, выход этилбензола за один проход составляет около 50% от теоретического; остальной эти­лен теряется на образование ди- и полиэтилбензола.

Давление в алкилаторе во время работы составляет 0,5 ат (избыточное), температура 95-100°С.

Алкилирование бензола этиленом можно вести и в газовой фазе, над твердым катализатором, но этот метод еще мало при­меняется в промышленности.

Выход этилбензола составляет 90 – 95 % в расчёте на бензол и 93 % в расчёте на этилен. Расход на 1 т этилбензола составляет: этилена 0,297 т,

бензола 0,770 т, хлористого алюминия 12 – 15 кг.


2. ВЫВОДЫ ПО ПРОЕКТУ.

Наиболее дешёвый этилбензол получают выделением его из ксилольной фракции продуктов риформинга или пиролиза, где он содержится в количестве 10-15 %. Но основным способом получения этилбензола остаётся способ каталитического алкилирования бензола.

Несмотря на наличие многотоннажных производств алкилбензолов, существует ряд нерешённых проблем, снижающих эффективность и технико-экономические показатели процессов алкилирования. Можно отметить следующие недостатки:

Отсутствие стабильных, высокоактивных катализаторов алкилирования бензола олефинами; нашедшие же широкое применение катализаторы – хлорид алюминия, серная кислота и др.вызывают коррозию аппаратуры, не регенерируются;

Протекание вторичных реакций, снижающих селективность производства алкилбензолов, что требует дополнительных затрат на очистку получаемых продуктов;

Образование большого количества сточных вод и отходов производств при существующих технологических схемах алкилирования;

Недостаточные единичные мощности производства.

Таким образом, вследствие большой ценности этилбензола, в настоящее время спрос на него очень велик, при этом его себестоимость сравнительно невысока. Сырьевая база для получения этилбензола также широка: бензол и этилен в больших количествах получаются при крекинге и пиролизе нефтяных фракций.


3. СТАНДАРТИЗАЦИЯ

В курсовом проекте были применены следующие ГОСТы:

ГОСТ 2.105 – 95 Общие требования к текстовым документам.

ГОСТ 7.32 – 81 Общие требования и правила оформления курсовых и дипломных работ.

ГОСТ 2.109 – 73 Основные требования чертежа.

ГОСТ 2.104 – 68 Основные надписи на чертежах.

ГОСТ 2.108 – 68 Спецификации.

ГОСТ 2.701 – 84 Схемы, виды, типы, общие требования.

ГОСТ 2.702 – 75 Правила выполнения схем различных видов.

ГОСТ 2.721 – 74 Обозначения условные и графические в схемах.

ГОСТ 21.108 – 78 Условное и графическое изображение на чертежах.

ГОСТ 7.1 – 84 Правила оформления списка литературы.


4. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ.

1. Травень В.Ф. Органическая химия: в 2 т: учеб.для вузов / В.Ф. Травень. – М.: НКЦ Академкнига, 2005. – 727 с.: ил. – Библиогр.: с. 704 – 708.

2. Эпштейн Д.А. Общая химическая технология: учеб.для ПТУ / Д.А. Эпштейн. – М.: Химия, - 1979. – 312 с.: ил.

3. Литвин О.Б. Основы технологии синтеза каучуков. / О.Б. Литвин. – М.: Химия, 1972. – 528 с.: ил.

4. Ахметов Н.С. Общая и неорганическая химия: учеб.для вузов – 4-е изд., испр. / Н.С. Ахметов. – М.: Высшая школа, изд. центр Академия, 2001. – 743 с.: ил.

5. Юкельсон И.И. Технология основного органического синтеза. / И.И. Юкельсон. – М.: Химия, -1968. – 820 с.: ил.

6. Паушкин Я.М., Адельсон С.В., Вишнякова Т.П. Технология нефтехимического синтеза: часть 1: Углеводородное сырьё и продукты его окисления. / Я.М. Паушкин, С.В. Адельсон, Т.П. Вишнякова. – М.: Химия, -1973. – 448 с.: ил.

7. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза: учеб.для вузов – 4-е изд., перераб. и доп. / Н.Н. Лебедев. – М.: Химия, -1988. – 592 с.: ил.

8. Платэ Н.А., Сливинский Е.В. Основы химии и технологии мономеров: учеб.пособие. / Н.А.Платэ, Е.В.Сливинский. – М.: МАИК Наука / Интерпериодика, -2002. – 696 с.: ил.


Введение…………………………………………………………………………3

2.Технологическая часть……………………………………………………….

2.1. Теоретические основы принятого метода производства………….5

2.2. Характеристика сырья и получаемого продукта…………………..9

2.3. Описание технологической схемы…………………………………12

2.4. Материальный расчёт производства……………………………….15

2.5. Описание устройства и принцип действия основного аппарата….20

3. Выводы по проекту………………………………………………………….22

4. Стандартизация………………………………………………………..........24

5. Список используемой литературы…………………………………………25

6. Спецификация………………………………………………………………26

7. Приложение А………………………………………………………………27

8. Приложение Б………………………………………………………………28

Технология совместного получения стирола и пропиленоксида

Общая технологическая схема совместного получения стирола и пропиленоксида представлена на рис. 3. В данной технологии окисление этилбензола проводится в тарельчатой колонне 1. При этом как подогретый этилбензол, так и воздух подаются в низ колонны. Колонна снабжена змеевиками, расположенными на тарелках. Тепло отводится водой, подаваемой в эти змеевики. Если для интенсификации процесса использовать катализатор, то процесс необходимо проводить в ряде последовательно соединенных барботажных реакторов, в которые подают противотоком к воздуху этилбензольную шихту (смесь свежего и возвратного этилбензола с катализаторным раствором). При этом продукты окисления проходят последовательно через реакторы, в каждый из которых подают воздух.

Парогазовая смесь из верхней части реактора поступает в конденсатор 2, в котором конденсируется главным образом унесённый этилбензол, а также примеси бензойной и муравьиной кислот. После отделения конденсата от тазов он направляется в скруббер 4 хя нейтрализации кислот щелочью. После нейтрализации этилбензол возвращается в реактор С 1. Туда же подается этилбензол из колонны 10. Газы выводятся из системы. Оксидат из нижней части колонны 1, содержащий около 10% гидропероксида, направляют в ректификационную колонну 3 для концентрирования. Концентрирование гидропероксида проводят при глубоком вакууме. Несмотря на большие затраты энергии, этот процесс лучше проводить на установке двойной ректификации. При этом на первой колонне отгоняется часть этилбензола при более низком вакууме, а во второй колонне при более глубоком вакууме отгоняется остальная часть этилбензола с примесями. Дистиллят этой колонны возвращается в первую колонну, а в кубе получается концентрированный (до 90 %) гидропероксид, который направляется на эпоксидирование. Предварительно оксидат охлаждается в теплообменнике 5 исходным этилбензолом.

Рис. 4. Технологическая схема совместного получения стирола и оксида пропилена; 1 - колонна окисления; 2 - конденсатор; 3,7-10,18 - ректификационные колонны; 4 - скруббер щелочной очистки; 5,12,14 - теплообменники; 6 - колонна эпоксидирования; 11 - испаритель смешения; 13,15 - реакторы дегидратации; 16 - холодильник; 17 - флорентийский сосуд; I - воздух; II - этилбензол; III -пропилен; IV - раствор щелочи; V - газы; VI - катализатор- ный раствор; VII -оксид пропилена; VIII - смолы; IX - водный слой; X - стирол; XI - на дегидрирование; XII -пар

В колонне 3 отгоняется этилбензол с примесями кислот, поэтому верхний продукт также направляется в скруббер 4. Из куба колонны 3 сконцентрированный гидропероксид поступает в колонну эпоксидирования 6. (Эпоксидирование можно также проводить в каскаде реакторов.) В нижнюю часть колонны подается катали - заторный раствор из куба колонны 9. Туда же проводится подпитка свежим катализатором. Свежий и возвратный (из колонны 7) пропилен также подается в нижнюю часть колонны. Продукты реакции вместе с катализаторным раствором выводят из верхней части колонны и направляют в ректификационную колонну 7 для отгонки пропилена. Газы выводят из верхней части колонны и из системы для утилизации или сжигания. Кубовый продукт колонны 7 поступает в ректификационную колонну 8 для выделения в качестве дистиллята продуктового оксида пропилена. Кубовая жидкость колонны # поступает в колонну 9 для отделения продуктов синтеза от катализаторного раствора.

Катализаторный раствор из куба колонны возвращается в колонну эпоксидирования 6, а верхний продукт поступает в ректификационную колонну Юлля отделения этилбензола от метилфенилкарбинола и ацетофенона. Смесь метилфенилкарбинола (МФК) и ацетофенона подается в испаритель 11, в котором с помощью перегретого пара испаряются и отделяются от смол метилфенилкарбинол и ацетофенон. Смесь паров, перегретая до 300 °С, поступает в реактор 13 для дегидратации метилфенилкарбинола. В этом реакторе частично проходит дегидратация. Так как реакция дегидратации является эндотермической, то прежде чем продукты дегидратации поступают в другой реактор (реактор 15), продукты дегидратации перегреваются в теплообменнике 14.

Конверсия метилфенилкарбинола после двух реакторов достигает 90%. Продукты дегидратации охлаждаются водой в холодильнике 76 и поступают во флорентийский сосуд 17, в котором органический слой отделяется от водного. Верхний углеводородный слой поступает в ректификационную колонну 18 для отделения стирола от ацетофенона. Ацетофенон затем гидрируется на отдельной установке в метилфенилкарбинол, который поступает в отделение дегидратации.

Селективность процесса по оксиду пропилена составляет 95-- 97 %, а выход стирола достигает 90 % по этилбензолу. При этом из 1 т пропиленоксида получается 2,6--2,7 т стирола.

Таким образом, рассмотренная технология представляет сложную систему, включающую множество рециклов по этилбензолу, пропилену и катализатору. Эти рециклы приводят, с одной стороны, к увеличению затрат энергии, а с другой, позволяют вести процесс в безопасных условиях (при низкой концентрации гидропероксида-- 10--13%) и достигать полной конверсии реагентов: этилбензола и пропилена.

Следовательно, данный процесс необходимо оптимизировать. В предложенной технологической схеме достаточно полно используется тепло реакций и потоков. Однако вместо холодильника 16 лучше использовать котел-утилизатор, в котором можно получать пар низкого давления. Для этого в котел-утилизатор необходимо подавать водный конденсат, из которого будет получаться пар. Кроме того, следует предусмотреть более полное использование отходящих газов и смолы, щелочного раствора солей из скруббера 4, а также до- очистку водного слоя флорентийского сосуда. Наиболее существенным усовершенствованием технологической схемы может служить замена реакторов дегидратации на колонну, в которой можно организовать совмещенный реакционно-ректификационный процесс. Этот процесс протекает на ионообменном катализаторе в парожидкостном варианте, т. е. при температуре кипения смесей, проходящих через колонну, и может быть представлен схемой (рис. 5).

Рис. 5.

В таком варианте процесса конверсия и селективность могут достигать 100 %, так как процесс протекает при низких температурах и малом времени пребывания продуктов синтеза в реакторе.Преимущество данного варианта процесса заключается еще и в том, что стирол не попадает в куб колонны, а выделяется в виде гете- роазеотропа с водой (температура кипения ниже 100 °С), что позволяет исключить его термополимеризацию.